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FREE-MOLECULE FLOW IN THE AXIAL-FLOW TURBO-VACUUM PUMP

by

John S. Maulbetsch and Ascher H. Shapiro

ABSTRACT

The rarefied gas flow through a moving cascade of flat plates

was investigated analytically and experimentally, with the application

in mind of high-vacuum pumping.

The theory is based on the assumption of free-molecule flow, i.e.,

no collisions between molecules. The essential quantities determining

the performance of a blade row are the net transmission probabilities

from one side to the other. These transmission probabilities depend

mainly on the blade angle and spacing-chord ratio and on the ratio of

mechanical speed to mean molecular speed. In this report the transmission

coefficients are calculated by numerical solution of the governing

integral equation., and are compared with the results of earlier Monte

Carlo calculations.

Experiments with a rotating test machine having either a single

rotor or a rotor followed by a stator gave results in good agreement with

the theory.

A special means was developed for testing stationary cascades

under conditions simulating the operation of a moving rotor. This

apparatus was tested with several blade geometries. The results con-

firmed both the theory and the feasibility of the new rarefied gas

wind-tunnel concept.
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NOIMENCIAT•RE

AR Aspect ratio (blade span to width of passage between blades).

b Blade chord.

c Average molecular speed for Maxwellian distribution, Tir/ol

n Molecular number density.

N Effusion flux, number of incident molecules per unit area per unit time.

p Pressure.

R Universal gas constant divided by the molecular weight of the gas.

s Blade spacing in the tangential direction.

S Ratio of the mean mass speed of the gas, relative to the blades,
to the most probable molecular speed. S = V[T

T Temperature.

u, v, w Components of the thermal velocities of molecules.

V Magnitude of the mean mass velocity of the gas relative to the
blades.

VB Blade speed, in tangential direction.

VT Axial component of mean mass throughflow velocity of the gas.

W Ho Coefficient (the net flux of molecules through the cascade,
expressed as a fraction of the flux #1 incident on the upstream side).

OL Blade angle with the tangential direction.

'4 Angle which the mean mass throughflow velocity of the gas makes with
the axial direction.

7-12 Transmission coefficient (the fraction of molecules incident on
side 1 of the blade row which ultimately emerge to side 2).

The subscripts 1 and 2 refer to the upstream and downstream sides of
the blade row, respectively.
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ntIOrumCTIf

Background of Research

Until recently, it had alvays been assumed that methods used for

pumping or compressing gases at the very low pressures dealt with in

vacuum technology would necessarily be quite different from those normally

employed at aerodynamic pressures. The expected pressure ratios per

stage associated vith axial-flaw or centrifugal compressors operating

at aerodynamic pressures are so low (1.05 to 1.2 for the axial-flov;

1.5 to 2.0 for the centrifugal) that far too many stages would apparently

be required to obtain the overall pressure ratios required in high-

vacuum applications. However, at very low density levels the molecular

structure of the gas may no longer be ignored in considering the flow

mechanism. The entire operation of fluid machinery must then be looked

at from a molecular view point. The normal limitations on pressure

ratio --- adverse pressure gradients, separation, shock waves, surging,

and stalling --- are no longer meaningful. That large pressure ratios

per stage can be achieved by axial-flov machines in the free-molecule

range of pressures was demonstrated by the experiments of Becker (1)

and of Hablanian(2).

The present project was initiated under sponsorship of the Office

of Naval Research after approximate calculations for the case of very

high blade speeds indicated the possibility of extremely high pressure

ratios per stage and gave some idea of the influence of the blade row

geometry. Our object has been to provide a theoretical and experimental

foundation on which axial-flaw bladed vacum pumps my be designed and



their performance predicted. Initial results were presented in our first

report 3) to the Office of Naval Research under this contract. These,

together with sume additional material, have been summarized in two

published articles (4) (5).

We present herewith our final report on the subject, constituting

a definitive account of the performance of moving cascades of flat plates

in the free-molecule regime.

Sunmary of Present Investigation

The work described in this report may be divided into three sections.

First, the theoretical problem has been solved by numerical solution

of the governing integral equation. For single blade rows, this made

it possible to extend the theory over a wider range of operating parameters,

and also to eliminate the not inconsiderable statistical errors inherent

in the Monte Carlo method used previously in reference 3.

The second aspect of the program was the extension and refinement

of the previous experimental studies, using the existing apparatus.

The third and most novel phase of the research was the testing of

free-molecule cascades in an adaptation of the device which in effect

made it into a new type of low-density wind tunnel. This allowed us

to test a variety of blading configurations more conveniently and

rapidly than would be possible in a rotating machine. The scheme used has

application to a wide variety of low-density wind-tunnel experiments.
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ANALYTICAL PRo(RAM

Analysis for a Single-Blade Row

The Monte Carlo method for calculating the molecular flows through

(3)
the machine has been described fully by Kruger . This method, essentially

statistical, was chosen because at that time it was thought to require

less machine time than the solution of the integral equations in terms

of which the problem may also be formulated. This was undoubtedly the

case for the multi-row calculations, for which the molecular velocity

distributions are non-Maxwellian. Furthermore, the direct analogy

between the individual samples of the Monte Carlo method and the individual

molecules in the flow made the method look particularly attractive. In

fact, for problems involving a complicated geometry, or for the precise

calculation of stages in series, the statistical approach may well be

the only feasible one.

However, in some cases it is preferable to solve the integral

equations. For single rows of flat plates, such as are considered here,

the computer time involved in the integral solution is much less than that

needed for the Monte Carlo solution. Therefore, in order to cover a wide

range of variables, and also to get more accurate results with the amount

of machine time available, the integral equations were programmed on the

IBM 7090 computer. This had the added advantage of providing certain

intermediate results which might be helpful in designing better blade

shapes for such varying requirements as high pressure ratio or high

incident-molecule capture.

Fundamental Mode of ()perm.on

The operating characteristics of the machine may be understood by
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considering two regions of gas, separated by a row of flat-plate blades

(Fig. 1) moving with the speed VB. We shall make the following assumptions:

1. The upstream and downstream regions are each Maxwellian.

2. The flow is free-molecular with respect to the blade dimensions.

This requires that the mean-free path of the molecules be much

greater tnan the blade dimensions, and allows one to ignore

inter-molecular collisions within the blade row.

3. The temperatures in the two regions are equal. This is Justified

by the consideration that the rate at which energy is carried to

the blades and the casing by the molecules is small compared to

the rate at which it can be conducted or radiated away.

4. A stationary state prevails.

It can be shown from molecular flow theory (6) that the number of

molecules incident upon the blade row per unit area per unit time from

a Mxwellian region of number density f is given by

T_ P_e (Eq. 1a)

where x 6 'XS (Eq. ib)

and Ai X e.- L
f 111
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Nov let 1, represent the probability that a molecule incident

upon the blade row frou region 1 will ultimately reach region 2

(perhaps after many reflections from the blades), and 2'g, he same

probability of transmission from region 2 to region 1. Then, for zero

net throughflow, the number of molecules passing through the row in

opposite directions must be equal:

II (Eq. 2)

When a net throughflow exists, we may characterize the volume

flow by means of the Ho Coefficient, W, defined as the ratio of the

actual molecular throughflow to the maxiim possible throighflov.*

This maximum is Nk, and therefore the requirement of conservation of

molecules within the blade row leads to

2 1 91(Eq. 3)

The effusion flux N depends on $cA S according to Eq. 1, and

hence depends on the blade speed VB, on the mean mass throughflow velocity

VT, and on the most probable thermal speed, F . However, as we shall

now show, cgs A is in fact extremely small. From the geometry of

Fig. 1,

VT v /v (Eq. ~

The •o Coefficient in related to the net volume tbroughflow by the

equation

Net volume Throughflow .J /r W



and, by definition,

- (Eq. 5)

Furthermore, since the mean mass throughflow velocity is equal to the

volume flow per unit area, we may write

V_ KA (Eq. 6)

where KA is the ratio of the throughMlo area at the cascade to the

throughflow area a mean-free-path length away from the cascade, in the

region from which the molecules are incident on the cascade. Combining

Eqs. 4, 5 and 6, we form

Thus, Eq. la may now be written as

__ ++ .4 X (Eq. 8)

Expanding the functions on the right-hand side in ascending power

of X , and simplifying, we get

O_ 4W 1- x4 2 -+ X ....1 (Eq. 9)
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This may be inverted to give

-A KAW KAW 7 + i K VV (Eq. 10)
Z r 2

Now W can never exceed unity, and, in any practical situation, it

is likely to be not more. than 1/2. In our experiments with the one-row

compressor (single rotor) and with the two-row compressor (single rotor

followed by single stator), KA was equal to 0.274. Hence 6 was

at most equal to about 0.04, and was generally far less. In our experiments

with the stationary cascade apparatus, S C..S was always less than

.035.

The foregoing analysis shows that for most purposes it is sufficient

to assume that S - • 0 . With this assumption it follows from

Eq. 1 that

= - (E~q. 11)2q- 4.

Then, since the temperatures are the same in regions 1 and 2, Eq. 3

may be put in the following form which expresses the operating per-

formanance of the row insofar as it relates the pressure ratio A,/41,

across the row to the volume throughflow parameter W:

'Fit (Eq. 12)
IL -:1 '2
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Since, as shown above, the net throughflow imparts only a very

small mean mass velocity to the gas in the axial direction, the IA.

are only weak functions of W. Neglecting this dependence, the analytical

problem reduces to that of determining the values of Z,, and Z2! as

functions of the dimensionless blade speed 6 = \/Z r "T and the

blading parameters & and s/b . Note that in the free-molecule range,

the absolute density level and the Knudsen number are not significant

variables.

Analytical Formulation

The problem may be divided into two parts: (1) the determination

of the initial incidence distribution of molecules from the Maxwellian

regions as they arrive at the blade surfaces; and (2) the evaluation of

the ultimate transmission probabilities for molecules within the blade

row after they have been emitted from one of the blade surfaces. The

analysis is illustrated by Fig. 2.

The fraction T of molecules incident upon the blade row from

region 1 which pass directly to region 2 without colliding with a

blade surface can be computed explicitly in terms of the variables

Next, the fraction of incident molecules which impinge directly

upon the blade area AX at position x (or dj at I ) along the

surfaces of the blades may be calculated, in terms of the so-called

initial incidence distribution. These are characterized by the density

distribution functions II and u , such that SA is the fraction

of all molecules entering the passage from region 1 which iminge

directly on the area 4% , and siullarly for i S
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Now let TXJ be the ultimate probability of a molecule's reaching

region 2 after having been emitted from area AM at X (after, perhaps,

a number of collisions with the blade surfaces), and let be

similarly defined. Then the overall transmission coefficient, 1,

may be expressed as

2g ~ i~u d~ +f~gd (Eq. 13)

where it is to be understood that the integrations are over the entire

length of each blade.

In this expression all quantities may be calculated directly from

the known quantities except for the functions T3t (2L) and (7 ~r )

For this calculation, consider molecules being emitted from a 4 at

X on the left-hand blade surface. Let us define Cze as the

fraction which passes directly from A to region 2 without collision,

and !:t%, 1) 4j as the fraction which passes directly fron d4 to

some d at . Then, since the rate of molecular incidence on any

area equals the rate of molecular emission, we may write

a dC (Eq. 14a)

and, similarly,

. a~ Cf 2 F ( 1 , I4x (Eq. l~ib)

S4
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In this pair of simultemeous integral equations, the functions

C22(%.)) C12(o) F(7c~) ,anld F(j11 z) maybe ccaputed from

the geometry of the blading and the cosine law for diffuse reflection.

They are independent of the speed of the blade row. When the cosine

law is valid, it may be further shown that F(,%)=F( % ! ) .

For the special case of flat plate blades, with which we are dealing,

certain coditions of symetry prevail, greatly sinplifying the problem.

These are that, at equal values of X and •

Moreover, these four values of q must satisfy the conservation relations

X14 Xz It I (Eq. 16)

Using Eqs. 15 and 16, Eqs. 14a and l4b may be combined and reduced to

F (i c J) Al (Eq. 17)

To solve this equation, the integral on the right-hand side was

first expressed as a sum of twenty terms, based on the trape-

zoidal rule for numerical quadrature. Then the function q 1 )

was solved for by iteration. This in turn gave T,,, (-X) and then

Eq. 13 could be solved for Z7,,.
The analytical expressions for all the functions defined above

are to be found in Appendix A. The functions were ccqauted, and Eqs.
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17 and 13 solved, on the IBM 7090 computer at the M.I.T. Computation

Center, using numerical quadrature with twenty intervals for each integral.

Results of Analytical Program

The results of the calculation program for flat-plate arrays have

been collected and exhibited in several ways:

1. In Table 1 are displayed the values of 'X for systematic var-

iations of the geometric parameters & and S/6 and of the blade-

speed parameter S . Note that these are all based on the

assumption 6 Cal Y_5 0 . Note further that positive values of

correspond to Z,,, while negative values of 8 correspond to XP,

2. Figures 3, 4, 5, 6, and 7 show the same information graphically.

3. Figures 8, 9, 10, 11, and 12 show the two combinations of the X s

which are indicative of the performance of the machine. Note,

from Eq. 12, that 2, gives the pressure ratio for zero

throughflow, while '-. gives the value of W for no

pressure rise.

4. Figures 13, 14, and 15 are cross-plots of Figures 8 through

12, showing the effect of spacing-chord ratio on 7 2 /VZ

and 7_1 -

5. Figures 16, 17, and 18 are similar cross-plots, showing the

effects of blade angle 4 .

6. Figures 19 and 20 show certain intermediate information regarding

the incident flux distributions, I and V and the ultimate

transmission probability, q•, of molecules reflected frm the

blade surfaces.



In examining the results of the analysis, one must do so in

the light of the characteristics of operation that would be required

of the individual blade rovs in an actual compressor. Equation 12

shows that, for high pressure ratio per stage, the ratio 'Zzi l

should be large, while for large pumping capacity, the difference

YIM - 721 should be large. These goals are generally not compatible.

For instance, the highest pressure ratios are attained with e4 -= (G

or Zo and with 0/-t1/4 - I2. However, these configurations have

low values of the throughflow parameter 2i2- -ZI "

However, practical consideration of a working design for such a

compressor indicates that the situation is not necessarily an unfortunate

one. In considering the requirements for high-vacuum technology, one

noemally thinks in terms of absolute pressure levels of 10i8 to 3'30mn Hg.

or lower. If a compressor, such as the one under discussion, were to be

used to attain such a pressure level, it would probably be operated in

c)njunction with a mechanical forepump with a blank-off pressure of,

at best, 10t (102mm g.). This would require a pressure ratio across

the machine of approximately 106 or more. Such a pressure ratio

clearly cannot be obtained with a single blade row. Cperating in air,

(with a most probable molecular speed at 68"F of approximately 1350 ft/Isec.),

the best blade-speed ratio one could hope to attain is about unity. Even

at zero flow this would require at least six or seven stages. At a

zero-flow condition, the most efficient design would clearly be one

which incorporated identical stages all providing the highest possible

pressure ratio. However, since even at "blank-off" there is always a

net throughflow, and since one must pass through a 'pump-down" period,

high volume flow is actually as important for the machine as a whole as

high pressure ratio.
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Now the mass througbflow is the seae for all stages of a mnlti-stage

machine, and thus the volume tbroghnow is inversely proportional to the

pressure level upstream of each row. Hence, for a malti-stage machine,

all the stages need not perform the sae function. The stages near the

outlet, where the pressure level is relatively high, should provide

high pressure ratios per stage. for in this region the Ho coefficient

is nearly zero. Near the low-pressure end, on the other hand, where

the volume throughf 1w is likely to be quite large, blade configurations

should be chosen to accomodate high flow and still provide some reasonable

pressure ratio. Thus, closely-spaced blades with small blade angles

are desirable near the high-pressure end of the machine, while more

widely spaced blades with larger angles are desirable for the low-

pressure end of the machine.

Ccomarison with Results of Monte Carlo Calculations

It is of interest to compare the computed results presented here

with the corresponding statistical results obtained by the Monte Carlo

method3). There are 81 cases exactly comparable with respect to the

values of be) s/cý " S.

The two sets of results for these 81 cases can only be ccmpared

on a statistical basis. Accordingly, the percent error for the Monte

Carlo calculation was calculated for each of the 81 cases, on the

assumtion that the present results are, in fact, correct. These

cases were then arranged in ascending order of error, from the largest

negative error to the largest positive error. The errors were then

plotted (Figure 21a) in the form of the integral of an error distribution



-16-

function: i.e., the fraction of the total cases with an error less

than a given error was plotted against the given error. The smoothed

integral curve of Fig. 21a was then differentiated to give the error

distribution function of Fig. 21b.

On the assumption that the result of a Monte Carlo calculation would

be normally distributed around the correct answer, the number of samples

used was approximately chosen such that there would be only a 10.96%

probability that any particular result would be in error by more tham

10%. This is sufficient information to construct the theoretical error

distribution function from standard probability tables. The normal dis-

tribution function for the "expected" standard deviation of (= 0.0625 is

shown in Fig. 21b.

The actual error distribution and the "expected" distribution, as

exhibited in Fig. 21b, are in general agreement, to the extent of giving

credence to both the Monte Carlo results and to the present results. That

value of the fractional error, with respect to which half the errors are

greater and half less, is about -1/2%, which seems quite reasonable for

a sample of 81 cases. This comparison of the means may be associated

with the small truncation error of the integral calculations, as described

below, but this is somewhat speculative.

The important conclusion to be drown from Figure 21 is that both the

Monte Carlo results and the present results, reached by completely different

calculation routes, are in substantial agreement. The implication is that

both are substantially correct. We believe, however, that the present

results are the more reliable in individual cases.

Truncation Errors in Numerical Solution

In order to investigate whether a division of each blade surface

into twenty zones for purposes of mmerical quadrature of the interals
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in Eqs. 13 and 17 vas sufficient, trial calculations were also made for

ten, forty, and eighty saw. Fcro these trials it appears that the

truncation error is less than 1/2%
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EXTENSION OF COMPRESSOR RESKARCH

The second phase of the investigation involved the refinement of

the experimental program on the single-row compressor with 04= 200,

s,/b = 0.46, and an extension to a two-row machine comprising a rotor and

stator having mirror-image geometries.

Single-Raw Compressor

The experimental work was performed on the existing apparatus.

A cross-sectional layout of the machine is shown in Fig. 22. Figure 23

is a schematic of the associated equipment and instrumentation.

Although a description of the apparatus and the experimental technique

appears in our first report (3), it is repeated here for the convenience

of the reader.

The test section consisted of a cylindrical steel housing in which

the aluminum compressor rotor was driven by a high-frequency induction

motor. To maintain densities sufficiently low for free-molecule flow

in the test section, the housing was mounted directly on a six-inch

oil diffusion pump with its axis, and the axis of the compressor rotor,

in a vertical direction. The shaft connection between the rotor and

the induction motor was made through an annular clearance seal 0.750

inches in diameter, 0.540 inches in length, and with a radial clearance

of .002 inches. Using the formula for a thin slitlike tube, the molecular

conductance of the clearance seal is found to be 1.13 x 10-3 liters per

second for air at 20eC. Thus, if the pressure on the motor side of

the seal is maintained at a micron or less, the flow from the region
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of the motor is of the order of l0-3 micron-liters per second, a

negligible leek at the conditions of the tests. To ensure this

condition, the motor housing was connected to a two-inch oil diffusion pump.

As a further precaution, a low vapor-pressure silicone grease Vas used as

a lubricant for the motor ball bearings. Provision was made to admit

gas to the system both above and below the rotor. Seals between the

system and the atmosphere were maintained by means of welded and

soldered joints, O-rings, special gasket seals for the ionization

gauges, and, in the case of the thermocouple gauges and the gas inlet

tubes, by red glyptal lacquer.

Thh densities upstream and downstream of the compressor rotor

were measured by hot filament ionization gauges. one thermocouple

gauge was used to insure that the pressure in the motor housing was

below one micron, and another was connected to the test section upstream

of the disk. The flow rate of gas admitted into the system was measured

on the high-pressure side of the leak valve by the displacement of

a column of mercury in essentially the sawe manner as that described by

Dushban.(7) It was assumed that the mass flow rate of gas through the leak

valve was proportional to the square of the pressure on the high pressure

side of the valve, as for compressible flow at low Reynolds umbers,

and the flow measurement was used to determine this constant of proportion-

ality. The speed of the rotor was measured by a permanent magnet-and-coil

tachometer and an electronic counter. The temperature of the outer race

of the bearing at the rotor end of the shaft was monitored with a thermo-

couple and potentiometer.
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Experimental Technique

The apparatus was prepared for testing by thoroughly cleaning

all surfaces to be exposed to the vacuum with acetone and by heating

the entire apparatus with infrared lamps to a temperature of the order

of 1ooeC for several hours with the vacuum pumps operating. At zero

blade speed, with both leak valves closed, a pressure of about 2 x 10"m

was obtained at the downstream ionization gauge. A coaparison of this

value with the reading of the upstream ionization gauge gave an app-

roximate value for the flow rate from leaks and virtual leaks in the

system, using the single-blade-rov calculations for a stationary rotor

to determine its impedance to gas flow. Since the density ratio across

a rotating blade row is a function of the upstream volume flow rate, the

effect of these small leaks in the system was made negligible by admitting

gas through the downstream leak valve and raising the density level in

the system. Tests were conducted at density levels for which no density

drop was measurable across the stationary rotor.

The dimensions of the compressor rotor used are given in Fig. 22.

Angular velocities in the range from 20,000 to 30,000 r.p.m. gave tip

speeds from 620 to 955 feet per second. Ordinary air was used as the

test gas for the compressor tests. In the cascade experiments, described

later, xenon was also used because its lower molecular speed allowed

higher dimensionless blade speeds to be reached. The pressure down-

stream of the rotor was maintained at about 10i - g by means of the

lower leak valve. The flow of gas through the rotor was controlled by the

uper leak valve and the flow rate was measured by the displacement of a

mercury column, as previously described, and by the density drop across
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the compressor rotor at zero blade speed.

Two-Row Compressor

The two-row compressor was built as a combination of the rotor

previously described and of a following stator having a geometry that

was a mirror image of that of the rotor. Figure 24 shows details of the

arrangement and gives pertinent dimensions.

The spacing between two rows was made as small as possible in

order to minimize the effects of the end walls, and also to reduce the size

of the annular passage designated by L in Fig. 214. This annulus represents

a leakage path through which molecules from the high density side may by-

pass the stator with a transmission probability of nearly unity. However,

this throughflow area was negligibly small in couparison to the through-

flow area of the stator, and thus its effect on the performance of the

machine was also neglibible.

Experimental Results with Single-Row Compressor

On Figures 25, 26, and 27 are displayed the experimental data and

calculated results for the single-row rotating machine, with air as

the test gas.

The pressure ratio across the rotor, for zero net throughflow,

is shown in Fig. 25. Also shown are the experimental data of Kruger

and Shapiro( 4 ) & (5), as well as the theoretical pressure ratio for

zero throughflow, as computed fran Eq. 12 and the transmission

coefficients of Table 1. It is to be uoted that the blade speed 6 in the

abscissa of Fig. 25 is reckoned at the arithmetic mean radius between the
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tip radius of the blades and hub radius; correspondingly, the value of

s/b = .46 is also reckoned at the same mean radius. The present

results and the earlier data of Xhuger and Shapiro are in agree-

ment to within the accuracy of measuring the pressures.

While the theoretical predictions are in general agreement with

the experimental results, and while they certainly follow the same sort

of curve, there is a substantial discrepancy, with the experimental rotor

showing distinctly better performance than would be anticipated from

the theoretical calculations. For instance, at a blade-speed ratio of

0.50, the theoretical expectation of zero-throughflov pressure ratio

is about 2.85, whereas the measured pressure ratio for zero throughflow

is about 3.75.

Fig. 26 shows, for several different values of the dimensionless

speed ratio 8, the measured curves of pressure ratio across the row

against volume throughflov. The latter is expressed in termo of the

volume throughflov parameter W, namely, the ratio of the actual volume

throughflow to the Volume throughflow incident on the blade row from

the upstream end. The ordinates of Fig. 26 have been normalized with

respect to the pressure ratio for zero throughflow. In other words,

they represent the pressure ratio for a given volume throughflow

to the pressure ratio corresponding to zero throughflow for the same

as displayed on Fig. 25. According to Eq. 12, the curves of density

ratio vs. volume throughflow should be straight lines, at least for

the limiting case S COS = 0 . It may be noted frm Fig. 26

that the experimental data do indeed follow straight lines within

the experimental accuracy.

Referring again to Eq. 12, the experimental values of the
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transmission coefficients 1,2 Md Fp. may be calculated

from the intercepts of the straight line of pressure ratio vs.

volume flow. Thus, using the experimental data of Fig. 25 and

the "best" straight lines of Fig. 26, the transmission coefficients

were calculated as a function of the dimensionless speed ratio .

The results are shown in Fig. 27. Also shown on Fig. 27 is the

theoretical curve of transmission coefficient vs. dimensionless

speed ratio, as interpolated from Table 1.

The experimental data in Fig. 27 are in general agreement with

the theoretical predictions. For positive values of 8 , the measured

transmission coefficients lie higher than the theoretical; for negative

values of S, they lie slightly lower.

All the experimental results for the single-row rotating machine

are essentially summarized in Fig. 27, and it remains now to inquire

as to the possible sources of discrepancy between the measured values

of transmission coefficient and the theoretical. To the degree that the

actual conditions of the experiment duplicated the postulates of the

theoretical model, we should expect substantially perfect agreement.

However, there were several deviations, and these will now be dis-

cussed and their significance appraised:

1. The molecular fluxes incident on the rotor from the upstream

and downstream sides were not necessarily exactly Maxwellian.

However, the mode of operation of the moving cascade is such

that slight departures from Maxwellian conditions should

not have much effect on the transmission coefficients.

Accordingly, this is not felt to be a significant source

of deviation between theory and experiment.
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2. Earlier, in connection vith Eq. 1, and in the calculations of

2. and ,I the theoretical calculations were silified by

assuming that SC4.P is approximately zero. This is not exactly

correct. Estimates of the amount of error this might involve, however,

indicate that this approximation could scarcely be the source of

the difference between theory and experinent observed in Fig. 27.

3. In making the theoretical calculations, it was assumed that

molecules incident on the blades would be reflected in a diffuse

manner. That is, the molecules emitted from the surface were

calculated as though they came from a Maxwellian region behind the

surface. Examination of the geometry of the blade rows shows that

even a very small proportion of specular rather than diffuse reflec-

tion would make an enormous difference in the transmission coefficients.

In particular, it would greatly increase the transmission coefficient

te. , and it would greatly decrease the transmission coefficient

'2l . We have nothing firm on which to Judge whether this

was a significant factor, but a comparison of these results with

those of the two-row rotating machine and with those for the

stationary cascade suggests that this was not the essential source

of discrepancy.

4. The most likely source of discrepancy between theory and experiment

in Fig. 27, especially when we take into account the experimental

and theoretical cosparisons for the two-row rotating machine and

the stationary coscades, is the fact that the cascade is not strictly

two-dimensional. Entirely apart from the variation of radius and

of blade speed along the span of the blades, the most important

factor seems to be that in the actual machine there are end walls
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to the cascade. One of these end walls, at the hub, is

stationary with respect to the blades. The other end wall, at

the casing, is moving with respect to the blades. The stationary

end wall tends to reduce the values of both transmission coefficients,

7,2 and Z| , through what may be thought of as a frictional

resistance. If one examines the relationship between the moving

end wall and the blades, it will be seen that any molecules

incident upon this moving end wall will be reflected back into

the blade row in such a way as to iiprove their chances of being

emitted toward the downstream side. This tends to increase the

value of ; and to decrease the value of Ep , a trend in

agreement with the comparison of Fig. 27. Moreover, as further

indication that this may well be the principal explanation, note

that at a value of the dimensionless blade speed ratio S = 0,

where the effect of the moving end wall would be minimized, the

agreement between theory and experiment is within the accuracy of

the experimental data. As further evidence on this point, the

effect of the stationary end walls at S = 0, according to the

investigations described later with stationary cascades having

various aspect ratios, is quite small.

xerimental Results with Two-Raw Compressor

Figs . 28, 29, and 30 show the exerimental data and the caquted

experimental results for the two-row rotating machine. These three

figures are caarable in their construction to Figs. 25, 26, and 27

respectively, and may be interpreted in the same way. The one point

requiring clarification has to do with the theoretical calculation of



-26-

the trnsmission coefficients shown in Fig. 30. These were calculated

from the single-raw transmission coefficlents Of Table 1 using the calcula-

tion procedure described in ref. 5. Note further that the solid curve of

Fig. 28 is the overall zero-flow density ratio, vhile the dashed curve

is the zero-flow density ratio for the stator alone, found by combining

the results of Fig. 25 vith the solid curve of Fig. 28.

In assessing the comparison between the experimental and theoretical

results for the tWo-rov rotating machine, we y• restate the first three

comments made above with respect to the similar comparison for the single-

raw rotating machine. The last comnent made above, however, requires

modification, inasmuch as the stator of the two-row machine had two

stationary end walls. This vould have the result of reducing the trans-

mission coefficients ZI& a2nd1 for the stator row. This intrpretation,

when applied to the one-row machine (Figs. 25, 26, and 27) and to the

two-row machine (Figs. 28, 29 and 30), seem to mike for a consistent

picture, especially when it is realized that there is a leakage backflow

around the stator.
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PRU-MOLECULE CASCADE TESTS

The third stage of the program represented the most novel

contribution of the present research. Its purpose was two-fold. The

first was to enlarge the scope of existing experimental results app-

licable to the free-molecule compressor by testing a variety of different

blade geometries. The second was to test a new concept in low-density

"wind tunnels". To obtain the required data through the use of rotating

blade rows would have necessitated the building and balancing of a new

rotor for each geometry tested. The alternative scheme was based on a

free-molecule cascade in which a mean mass velocity was Imparted to the

gas on one side of a stationary blade row by means of an unbiaded rotor.

Apparsatus

An assembly drawing of the apparatusmodified for use as a cascade

wind-tunnel, is shown in Fig. 31a.

The blades were mounted in one quadrant of the cylindrical shell

separating zones I and 4 , as shown in Fig. 31b. Since the blades

in this arrangement are stationary, there is no problem of strength

or balancing. They were simply cut out of thin sheet-stock brass

with tin snips, and were held in place in the blade racks with small

dabs of epoxy resin at each corner. A mean mass velocity was imparted

to the incident molecules on one side of the cascade by the high-speed

rotor. The design of the outer edge of the rotor, with two small ridges

on the top and bottom, insured that all molecules incident on the blade

row from region 1 were spitted from the outer edge of the rotor. Therefore,
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under the assumption of diffuse reflection, the gas in region 3 had a

mean mass velocity with respect to the blade row equal to the peripheril

speed of the rotor. Thus the stream of molecules emitted from the rotor

played the same role as the high speed gas stream in a rarefied-gas wind

tunnel.

Procedure

In order to determine the transmission coefficients, three sets

of measurements were required. The first was a calibration of the

blade row as a flow-meter with the rotor locked, and with the positive

displacement flowmeter used for determining Zo , the transmission

coefficient of the blade row at a blade-speed ratio of zero. The second

was a series of measurements of the pressure ratio across the blade row

at finite blade speeds and zero net throughflow, for the determination

of lit/7o vs. S. And the third was another set of-runs similar

to the second, with the blades facing in the opposite direction, to

determine 1 /7's vs. S. In the case of flat-plate blades with

their accompanying symmetry, it was possible to make the third set of

measurements simply by reversing the direction of rotation of the

rotor.

In the original design of the apparatus, it had been intended that

the resistance to flow between regions 3 and 4 and also between 4 and

5 would be negligible in comparison to the resistance of the blade

row itself. This was indeed the situation in the latter case, as

Indicated by the fact that the pressures in regions 4 and 5 were equal.

Accordingly, one could speak meaningfully of a single downstream
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pressure during the determination of Za . However, the resistance

between 3 and 4 was larger than had been anticipated. This difficulty

was overcome by measuring two resistances; first, that without the

blades present; and, second, that with the blades in place. From these

two pieces of information it was possible to evaluate the resistance

of the blade row alone. The method is described in Appendix B.

The experimental technique was essentially the same as that des-

cribed for the single-stage compressor, with one addition. As mentioned

earlier, it was necessary that the pressures in regions 4 and 5 be identical

in order that the downstream pressure be a unique quantity. To this end

a large passage was provided around the rotor between the regions, but

an additional ionization gauge was installed for region 4 and monitored

during the tests to insure that such equality existed. This problem of

flow resistance between the various regions was, of course, a matter

of concern only in the calibration test for determining Z . The tests

at finite blade speed to determine the plot of zero-flow density ratio

vs. blade speed ratio were conducted with no throughflow. At this con-

dition the resistance to net throughflow between the three regions is

of no concern.

Experimental Results with Free-Molecule Cascade

The experiments performed had three main goals:

1. To check out the theory for a variety of flat-plate blade

geometries without the necessity of machining new rotors for

each case.

2. To investigate the influence of end-wall effects, in terms of

the aspect ratio as an experimental parameter.
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3. To test non-flat-plate blade shapes for which an analysis

could not readily be performed.

All the experimental data, and the associated results, are shown

in Figures 32 through Figure 41.

Fig. 32 shows the curve of pressure ratio vs. throughflow for the

apparatus with no cascade installed. These data were enployed as

indicated in Appendix B.

With the exception of Figure 36, all the other Figures are arranged

in three parts, and each Figure relates to an individual blading geometry,

that is, to a particular angle & , solidity s/b, and aspect ratio AR.

Referring to Fig. 33 as an example, (o* = 20", s/b = 1/2, AR = 3/2),

Fig. 33a shows the curve of pressure ratio vs. throughflow with the

rotor locked, i.e., for S 0. In conjunction with the data of Fig. 32,

this led to the value of •4 according to the method of Appendix B. Fig. 33b

shows, for zero throughflow, the curve of density ratio vs. blade-speed

ratio; it was found by multiplying together the measured values of

Z, /Zo and o The latter, which were of course measured

individually, may be combined with the values of Y. obtained previously

to give the final values of Z,, and T displayed in Fig. 33c.

Effect of Aspect Ratio

Figures 33, 34 and 35 all refer to the blading parameters o4= 20*,

s/b = 1/2, which is very close to the corresponding parameters for the

tests with the one-row and two-row rotating machines. They differ in

that they pertain respectively to aspect ratios of 1.5, 2.8, and 4.0.

Note, by way of comparison, that for the rotating-machine tests the aspect
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ratio was about 2.4.

The most interesting feature of this series of three figures is the

question of how the stationary end walls of the cascade affect the trans-

mission coefficient. For convenience, the mean experimental curves are

collected in Fig. 36, where the theoretical curve is also shown. It is

evident that the transmission coefficients for an aspect ratio of 4 lie

nearly at the auysptotic value for an aspect ratio of infinity, and that

even for an aspect ratio of 2.5 the effect of the end walls is not very

large. The theoretical results for infinite aspect ratio are, within

experimental error, coincident with the experimental results for aspect

ratio 4. All this tends to confirm our earlier appraisal that the main

reason for the discrepancy between theory and experiment in the rotating-

machine tests was the pumping effect of the moving end wall.

The effect of aspect ratio observed here is much the same as that

reported in reference 8, where the results for chevron baffles with an

aspect ratio of 5 were nearly coincident with those for an aspect ratio

of infinity.

Effect of Spacing-Chord Ratio

Figures 35, 37, 38, and 39 are all for a blading angle oi= 20"

and with an aspect ratio large enough ('>4) to be considered nearly

infinite. They differ in that each is for a different spacing-chord

ratio, s/b, covering the range frCm 1/4 to 3/2. In every case the

measured transmission coefficients are in close agreement with the

theoretical values.
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Effect of Blade Curvature

Figures 40 and 41 show experimental data for cambered blading, for

which no theoretical results are available. Each of the two cambered

design is based on a straight-chord line with oe= 20*, s/b = 1/2,

and the results are therefore to be compared with those in Fig. 35.

With the camber of Fig. 4O, both the zero-flow pressure ratio

and the volume-flow capacity are less than with straight blades having

the same OC and s/b. Therefore this direction of camber is undesirable,

at least in the range of o4, s/b, and camber of the tests.

With the opposite camber, Fig. 41, the zero-flow pressure ratio

is slightly larger than that for flat plates, but the through-flow

capacity is only about half as large. Therefore this direction and amount

of camber also seems to offer no substantial advantage.
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APPENDIX A

DERIVATION OF F¶JCTIONS USED nf ANALYTICAL SaluTION

Initial Incidence Distributions

As explained earlier, the analytical solution may be broken up

into two major steps, the first of which is the calculation of the

so-called initial incidence distribution. By reference to Fig. A-i, it

is seen that molecules impinging upon the blade row from region I may

suffer one of three fates. They will either pass directly through the

blade row without a collision with the surfaces and thus be of no further

interest, or else they will collide with one of the two surfaces. The

items of importance in this stage of the calculation are: first, the

fraction which pass through the row directly, which we call C ;

and second, the fractions which collide with areas Ax and 4 on the blade

surfaces at varying X and 9 along the blades. These distribution

functions will be called 0 and I , as shown.

Fig. A-1
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This problem vill be approached, in the notation of Fig. A-2,

Fig. A-2

by first calculating the number of molecules incident upon area 4 at x

which enter the blade row by crossing the area O at ' ) and then integrating

across the opening between the blades from j = 0 to f = 5 . Since the

incoming molecules are uniformly distributed in space, every di has the

same molecular flux. Therefore the problem is to determine for a given

blade speed, what fraction of molecules crossing Ai are contained in the

plane angle 40 inclined at the angle 9 to the normal. A knowledge of

the blade geometry will then relate the , a > and, 0 , thus enabling

one, at least in principle, to perform the necessary integrations.

From the point of view of an observer on the blade row, the molecules

incident upon the row from region I will have a Maxvellian velocity dis-

tribution superposed on a mean mass velocity vector, specified by V and

A in Fig. A-3. Let IK represent the molecular velocity component

along ý , v along 7 , azn ," along - (normal to paper).
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Fig. A-3

Hence the number of molecules per unit volume having velocity coqponents

lying betbeen U and 1+ 4c4 , V and -+-Arv )and tVrand Wr+Ot is

given by

3/2j ( U-VCs45 (v 4. W21
e Lu AP dcaur (Eq. A-i)

Transforming from cartesian velocity coordinates IkjVA1to cylindrical

coordinates U 9 and Ud according to the relations

S= U Cos 0 (Eq. A-2a)

V = U sif (Eq. A-2b)

W- UY (Eq. A-2c)

the volume in velocity space &&4w becmes U dU 9cdr and

Eq. A-i bec:ame

f -~ W4Jc CAQYO

* 21V F\.wT) e tdJdW.BU (Eq. A-3)
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Now,, all the molecules which cross a surface per unit area per unit time

with velocities between L) and U+&U in the angle d0 at angle 0 to the

normal must have come from an imaginary cylinder behind the surface with

slant height A and altitude UC.0S G . Thus the number of

these molecules crossing unit surface per unit time is given by

If this is now integrated with respect to Ur from - co to 4,oO )and with

respect to U from 0 to oo )we obtain the total number of molecules crossing

the surface per unit time and per unit area with velocity vectors lying

in L at "

+ 43 igi4 2,S 4 ejC.05 dG a@ (Eq. A-5)

where

Dividing now by the total flux of molecules crossing the plane to get the

fraction of the total with velocities lying in do at 0 , one obtains

( ll/) +6- S )I+~aee ~ 9J (Eq. A-7)
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If now, both the blade surfaces and the opening between the blades

are broken up into a finite number of sections as shown in Fig. A-4, the

angle subtended by the Ith small area AX from a point 9 in the center

of the ith interval 44 is denoted by

Where, in general

Fig. A-4

S= - 5 / (x/bJ .(Eq. A-8)

Using Eqs. A-8, Eq. A-7 may be integrated between 'and

for a fixed position 4 on the scale of Z . One my then am over all

the t sections of the opening between the blades in order to obtain the

total fraction of molecules from the region considered which are directly

incident upon . Having done this for all ix S and , one ha a

stepwise approximation to and I/ The fraction transmitted

directly from region 1 to region 2 is calculated in a similar way.
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Ultimate Transmission Probability of Reflected Molecules

In performing the second stage of analysis, that of determining the

ultimate probability of a molecule's getting through to region 2 after

being emitted for a known position along the blades, it will be remembered

that, in general, it was necessary to solve two simultaneous integral

equations for T along with ryZ which were of the form,

O~= Cxz + V Fl 4 (Eq. A-9a)

and

where F (7A was defined as the fraction of molecules emitted fromu
dx at x which impinge directly upon the area dy at j and C the

fraction of molecules emitted from dz at X which reach region 2 directly

without any further collision with the blade surfaces. F 6, •) and

C are defined similarly.

For the case under consideration, certain simplifications are possible.

First, if the cosine law of reflection is valid, F(-A,I)= F&I,,-) ;and

second, for the case of flat plate blading, symmetry enables one to say,

forequalvabaesofxand , T Gand, similarly); o
Furthermore, since

X2

+ (E = ( (Eq. A-10)
1 2

it is possible to reduce the two simultaaeous equations to a single one

in the form,

-C F (x'j) Al (Eq. A-11)
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since r. ('X) and Q~)ame the seaw function, this equation may be

solved by iterative methods once the functions for F I) and xI

are known.

For the calculation of ' refer to Fig. A-5.

OL, K.

Fig. A-5

Assuming the cosine law of diffuse reflection, the fraction of molecules

emitted in an angle O0 inclined at an angle 9 to the normal is

Therefore the fraction emitted in the angle 7 is

X 2 Y) (Eq. A-12)

From the geometry of Fig. A-5,

[ cos ck (q
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Accordingly,

CS CO OL4
C W 9 (q. A-l14)

For the calculation of F~~~),refer to FiU. A-6.

Fig. A-6

Again, by the assumption of diffuse reflection, F ,)yj is given by

F (-x,) &j = 1 Co s 9dQ
Referring to Fig. A-6 for the geometrical configuration,

s s•

cosO= (Eq. A-15)

Also.,



F (Eq. A-16)

{. (~si~t@L 4~jT t + s r CIL
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APh•IZX B

TU MIn ION OF IN CACA TETS

Az described earlier, the free-molecule cascade with zero throughflow

enables on to measure directly7p Z and !r2i /7- as a function of

blade-speed ratio . T•erefore, in order to obtain the magnitude of

the transmission coefficients 12 and ' , one must measure 4 for the

stationary cascade. This is done by measuring pressure ratio vs. volume

tbroughflow, and using the relationship n,/ - (W /7 0).
In the case of the rotating-row machine, this was a straightforward

task since the only appreciable resistance to flow between the upstream

and downstream pressure gauges was the blade row itself. In the case of the

stationary cascade, such was not the case. However, the determination of

w0 was arrived at through the following considerations. Fig. B-1 is a

diagram of the stationary cascade, showing the several resistances to flow

between the two pressure gauges.

I
CAUCCASCAE

a;3

4-

C4A 
Fig -7
Fig. B-1.



-143-

In general, if me has several flov resistanoes in series between two

points, it is possible, froi a measurement of the flow at a given pressure

ratio between the two points, to determine the value of any individual

resistance if all the others are known. What is desired, in this instance,

is the value of the resistance from 2 to 3 Vhen the blades are in place.

This requires a knowledge of the resistances from 1 to 2, 3 to 14, and

4 to 5. Of these, only the resistance from 3 to 4 was not known and not

readily calculable. Therefore it was determined by means of a preliminary

experiment.

The general equation for the flow from a region i to a region J may

be written as

A - kJAj~ =j - . A
vhere N signifies molecular flux; q the transmission coefficient from

i to J ; and Ný the net throughflux ratio based on the incident flux

A for region i.

In the absence of moving parts, it is further required that

Aýý i (B-2)

Applying these equations to the successive stations of Fig. B-i, we get

"T/Y t -= i- WA2 B-3a)

/ (-N 3 /Z (B-3c)

"~. - (B-3d)



Since the mass flow' is constant along the flow path,

Wý-ý i- K (B-4)

where K is a constant. Now, since the positive displacement flow meter,

together with the pressure gauge at 1, yields the value W1, it is convenient

to elizinate K by writing

-IA1
Wý= Wl ' ,

%,{ Ai' (B-5)

Since A4 /Al ))i )lre may approximately set As o 0 . AlsO,

since IS I ) it follows that Vs S X =

By approximating the flow between stations 1 & 2 and between 2 & 3

as flow between parallel plates, the values 7, 0.33 and 77 0.60

(7)
are obtainable from the literature . Since these passages represent

relatively small resistances to the flow as compared to the passage from

3 to 4, small inaccuracies in these transmission coefficients have a very

slight effect on the determination of the resistance from 3 to 4.

With these quantities known, a measurement of V at any given value

of n /vt, is sufficient to solve for Z3,using the following combination of

Equations B-3 and B-5:

TI- A, ;EI2W1Il 'E* 3 tI '23A -W

Numeric. A,/A,-A/AsuM7. Prom Fig. 32, at Y.5/-K .5> 0.o2.

Thus one may finally calculate T 0. -S I

With this value of 7%, tests may be run with the blades in place, and

application of the equation above to the data furnishes values of 70

(i.e., T.O for each blade geometry.
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TABLE I

THEORETICAL VALUES OF TRANSiISSION COEFFICIENT,

Note: Positive values of S correspond to 1 12; negative values
correspond to 21-

(a) s/b-l/4

a
S 100 200 300 450 600

0.00 *0619 .0855 *1516 *2494 .3298
0.10 .0681 .0962 .1682 *2701 .3477

-0.10 *0562 *0758 .1362 .2293 .3110
0.25 .0784 o1142 .1953 *3014 .3715

-0.25 *0486 *0633 .1158 .2010 ,2621
0.50 *0979 01493 *2446 e3505 e3996

-0.50 *0383 90473 *0888 .1606 *2361
0.75 .1203 .1893 *2953 *3896 *4094

-0.7-5 *0306 *0364 e0697 .1300 .1973
1.00 *1448 .2323 *3427 *4134 *4018

-1.00 .0249 *0293 *0569 .1085 *1678
2.00 .2549 .3842 *4307 *3640 *2932

-2.00 .0136 .0185 *0375 *0748 .1188
3.00 .3643 *4348 .3663 .2705 92373

-3.00 *0095 .0156 *0325 *0667 .1077
4.00 .456Q .3946 .2824 .2323 .2217

-4.00 .0074 .0143 .0302 .0631 .1030
5.00 .5210 .3252 .2344 .2185 .2153

-5.00 .0062 .0134 .0289 .0611 .1006

(b) s/b-1/2

a
S 100 200 300 450 600

0.00 .0544 91432 .2370 .3642 .4617
0.10 .0615 .1599 .2609 .3919 .4842

-0.10 .0481 *1281 .2148 .3374 .4378
0.25 .0735 .1876 .2993 .4327 .5143

-0.25 .0400 .1082 .1848 .2991 .4010
0050 .0975 .2403 .3675 .4962 .5502

-0.50 .0298 .0822 .1441 .2434 .3413
0.75 .1263 .2988 .4360 .5466 .5646

-0.75 .0227 *0640 .1146 "2000 .2898
1*00 .1591 .3599 .4987 .5283 .5579

-1.00 .0181 .0517 .0943 .1685 *2495
2.00 .3120 .363T .6172 .5354 .4376

-2.00 .0109 .v3 2 5 .0619 .1164 *1780
3.00 o4572 .6321 *5578 .4283 .3629

-3.00 *0087 ,0272 .0532 01029 *1600
400 5624 9 .4673 o3738 .3373

-4.00 *0077 .0245 .0490 .0967 A1521
5,00 *6206 .5299 .4047 @3500 .3261

-5.00 .0070 .0230 .0466 .0931 .1476



TABLE I (continued)

THEORETICAL VALUES OF TRANSMISSION COEFFICIENT,J:

(c) s/b-I

S 100 20° 30° 450 600
0,00 *1363 .2638 .3744 *5097 .6069
0.10 *1542 92903 e4064 *5420 . 6.1.

-0.10 @1236 *2389 93435 *4773 .5802
0.25 .1799 .3374 .4560 .591 0.6648

-0.25 @1039 *2048 e3003 *4297 .5382
0.50 92274 .4066 .5389 .6596 .7045

-O.50 *0773 .1574 *2362 .3569 .4676
0.75 *2785 *4820 a6167 .7143 .7227

-0.75 *0579 *1219 .1900 92962 ,4031
1.00 *3311 *5542 *6841 .7498 *7208

-1.00 *0446 *0968 .1550 92497 .3498
2.00 .5258 .7654 .8166 .7373 .6172

-2.00 *0234 *0562 .0965 .1672 .2455
3000 *6736 .8491 .8012 96536 .5356

-3.00 *0178 .0455 ,0614 *1462 .2188
4.00 *7766 .8580 .7499 .5980 .4994

-4*00 .0151 *0405 *0744 *1367 *2074
5.00 .8433 *8365 .7048 .5665 .4816

-5000 .0135 *0376 *0703 .1312 .2008

(d) s /b-3/2

a

S 100 200 300 450 600
0.00 .3615 .4236 94927 *5913 96761
0.10 .3785 94501 *5234 .6218 s6989

-0.10 .3447 03973 .4621 *5604 e6513
0.25 94042 .4900 .5693 ,6655 .7285
-0.25 .3199 03589 .4170 .5137 ,6113

0.50 .4468 .5555 .6426 .7301 .7631
-0050 ,2802 02985 .2465 94388 0•412

0075 .4887 .6179 07089 07809 .7783
-0075 *2431 .2445 92842 .3715 o4734

1000 .5292 .6752 .7656 .8158 ,7758
-1.00 *2092 .1979 ,2320 ,3151 94132

2000 .6710 .8411 .8870 *8278 .6825
-2.00 *1079 00860 o1177 91946 *2770

3000 07784 .9174 .8961 *7699 .6054
-3*00 90536 ,0508 .0875 .1623 .2396
4000 WfF55 .9400 .8719 .7256 .5703

-4.00 .0285 .0417 .0789 .1509 02261
5000 09080 09387 .84T2 .6983 95545

-5.00 90184 *0385 90748 91449 o2188



TiiEORETICAL VALUES OF TRANSMISSION COEFFICIENT,

(e) s/b-2

a

s 1o° 20o 300 450 60

0000 .5147 *5536 o6052 o6849 07498
0.10 .5282 .5761 o6322 .7117 o7703

-0.10 .5012 o5310 95778 o6569 .7273
0.25 .5484 *6094 .6717 o7494 o7970

-OL.. 94810 *4972 *5366 .6137 *6907
0.50 *5815 96630 97331 *8033 *8286

-0e5O s4478 94420 .4691 .5412 .6251
0.75 o6137 o7129 *7869 *8439 .8437

-0075 *4155 o3895 .4055 *4717 05588
1.00 .6445 *7581 *8318 .8704 .8439

-1.00 e3843 .3408 ,3478 .4087 *4967
2.00 *7520 e8864 .9245 *8749 *7712

-2.00 o2752 .1918 *1879 *2443 *3307
3.00 .8334 .9447 .9319 .8273 97001

-3.00 *1912 o1084 .1181 .1838 *2699
4.00 o8920 .9629 .9153 ,7894 *6600

-4.00 .1294 *0678 00927 .1643 *2497
5.00 .9322 *9636 .8980 .7647

-5.00 *0858 .0502 .0837 .1563 *2408
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